

Draft Proposed Qualifying Capacity and Effective Flexible Capacity Calculation Methodologies

Energy Storage and Supply-Side Demand Response

RA Workshop | October 15, 2013 | Joanna Gubman California Public Utilities Commission

Agenda

- > Scope
- Probabilistic Modeling
- Qualifying Capacity
- ➤ Effective Flexible Capacity
- Eligibility Criteria and Aggregation
- > Testing and Certification
- > Deterministic Alternatives
- ➤ Next Steps

Agenda

- > Scope
- > Probabilistic Modeling
- Qualifying Capacity
- > Effective Flexible Capacity
- ➤ Eligibility Criteria and Aggregation
- > Testing and Certification
- ➤ Deterministic Alternatives
- > Next Steps

Only Supply-Side Demand Response and Energy Storage are in Scope

Demand Response (DR)

- May be supplied by any DR provider (DRP), whether IOU or third party
- Must participate in CAISO markets and be subject to a must-offer obligation (MOO)

Energy Storage (ES)

- Must participate in CAISO markets and be subject to a must-offer obligation (MOO)
 - Stand-alone
 - Distributed peakers
 - Customer-sited, with market participation
 - Co-located with DR or generation resources

Load-modifying & other ES/DR are not within the scope of this proceeding

Demand Response (DR)

- Customer-focused programs and rates
 - Example: Critical peak pricing
- Emergency reliability programs not bidding into CAISO markets
- Typically IOU-operated
- Need not participate in any markets

Energy Storage (ES)

- Voltage support applications
- Substation energy storage
- Community energy storage
- Customer-sited storage without full market participation

Deliverability, which yields net qualifying capacity, is also not in scope

- Deliverability calculations determine the impact of transmission constraints that could prevent a resource's full QC from being deliverable to load
 - QC is an input to deliverability calculations
 - The deliverable capacity is called the net qualifying capacity (NQC)
- NQC is calculated by the CAISO and adopted by the CPUC

Agenda

- > Scope
- Probabilistic Modeling
- Qualifying Capacity
- > Effective Flexible Capacity
- ➤ Eligibility Criteria and Aggregation
- > Testing and Certification
- ➤ Deterministic Alternatives
- > Next Steps

Probabilistic modeling enables a usefulness-based valuation of capacity

There are two usefulness categories: meeting *peak* and *ramping* needs

Effective Load Carrying Capability (ELCC)

Derating factor indicating how much each resource
 MW contributes to meeting peak capacity needs

Effective Ramping Capability (ERC)

 Derating factor indicating how much each resource MW contributes to meeting system ramping needs

Usefulness is measured by a resource's contribution to preventing blackouts

Metric: Loss of Load Expectancy (LOLE)

For a given electricity system and year, LOLE is the chance of load shedding due to insufficient capacity

Metric: Loss of Ramping Expectancy (LORE)

For a given electricity system and year, LORE is the chance of load shedding due to insufficient ramping capability

A resource's ELCC and ERC express its usefulness relative to a perfect generator

Why use probabilistic modeling for Energy Storage and Supply-Side DR?

Already mandated for wind and solar (SB 1x2)

More accurately represents likely conditions than deterministic modeling

Reflective of ES and DR value to the system as a whole

Will enable ED staff to provide guidance going forward as to what types of resources & design choices may be most useful

Probabilistic modeling is harder than deterministic, but still worth pursuing

New resource performance uncertainty can be addressed

- For Supply-Side DR, we can draw on performance data from existing Retail DR programs
- For ES, extensive performance testing can be conducted
- Performance forecasting uncertainty can also be built into the model

Because ES and Supply-Side DR are emerging resources, we can start small and learn from experience

Rules have not yet been fully developed for these resources; let's start as we intend to proceed

Agenda

- Scope
- > Probabilistic Modeling
- ➤ Qualifying Capacity
- > Effective Flexible Capacity
- ➤ Eligibility Criteria and Aggregation
- > Testing and Certification
- ➤ Deterministic Alternatives
- > Next Steps

Qualifying Capacity (QC) is a resource's contribution towards meeting peak

- Based on an ES or DR resource's demonstrated maximum output, P_{max}
- Derated by the resource's ELCC (usefulness factor) to take into account resource performance and use limitations, considering:
 - P_{max}
 - Availability by hour of day and season
 - Location
 - Temperature impacts
 - Forced outage rate
 - Startup, ramping, and shutdown profiles
 - Energy storage: Efficiency, available energy, charge/discharge duration
 - DR: Fatigue (consecutive hours and days), maximum calls, dispatch triggers
 - Historical performance of similar resources
 - Forecasting uncertainty
 - Other considerations?

Please share with us what inputs you think are needed, and how you feel we should address historical performance.

Model the electrical system...

including the ES/DR resource

including the ES/DR resource

Loss of Load Expectancy (LOLE) Model electrical system *without* the ES/DR

Add "perfect" generation to the model...

Expectancy

(LOLE)

Add "perfect" generation to the model until the LOLEs are equal

ELCC =

Perfect MW Added

Resource P_{max} (MW)

QC = Resource
$$P_{max}$$
 (MW) \times ELCC (%)

 $QC = Resource P_{max} (MW)$

Perfect MW Added

Resource P_{max} (MW)

QC = Perfect MW Added

$$QC = ELCC * P_{max}$$

Special Case: Co-Located Storage

- Co-located ES supplements a larger, primary generator (intermittent or conventional)
- Given its supplementary role, co-located ES does not receive its own QC, but rather modifies that of the primary generator

Special Case: Co-Located Storage

Special Case: Co-Located Storage

ELCC =

Perfect MW Added

Primary Resource P_{max} (MW)

QC = Primary
$$P_{max}$$
 (MW) \times ELCC (%)

 $QC = Primary P_{max} (MW)$

X

Perfect MW Added

Primary P_{max} (MW)

QC = Perfect MW Added

Agenda

- Scope
- > Probabilistic Modeling
- Qualifying Capacity
- ➤ Effective Flexible Capacity
- ➤ Eligibility Criteria and Aggregation
- > Testing and Certification
- ➤ Deterministic Alternatives
- > Next Steps

Effective Flexible Capacity (EFC) reflects meeting of ramping needs

- Quantifies the effective MW a resource contributes towards avoiding reliability events caused by inability to meet short term/intra-hour ramping needs
- Based on an ES or DR resource's demonstrated maximum output, P_{max} , and minimum output, P_{min}
- Derated by the resource's effective ramping capability, ERC (usefulness factor), to take into account resource performance and use limitations

ERC is similar to ELCC, but based on ramping-related reliability events

Add "perfect" generation to the model until the LOREs are equal

ERC is similar to ELCC, but may include dispatchable load/charging (P_{min} < 0)

Perfect MW Added

Resource P_{max} – P_{min} (MW)

- P_{min} is only included if it is negative.
 Otherwise, a minimum output of zero
 MW (i.e., not dispatched) is used.
- 2. The perfect generator is positive only.

EFC is equal to the resource MW range derated by its ERC ("usefulness")

$$EFC = Resource P_{max} - P_{min} (MW) \times ERC (\%)$$

- P_{min} is only included if it is negative.
 Otherwise, a minimum output of zero
 MW (i.e., not dispatched) is used.
- 2. The perfect generator is positive only.

EFC is equal to the resource MW range derated by its ERC ("usefulness")

Perfect MW Added

Resource $P_{max} - P_{min}$ (MW)

- P_{min} is only included if it is negative. Otherwise, a minimum output of zero MW (i.e., not dispatched) is used.
- 2. The perfect generator is positive only.

EFC is equal to the resource MW range derated by its ERC ("usefulness")

EFC = Perfect MW Added

- P_{min} is only included if it is negative.
 Otherwise, a minimum output of zero
 MW (i.e., not dispatched) is used.
- 2. The perfect generator is positive only.

EFC is equal to the resource MW range derated by its ERC ("usefulness")

$$EFC = ERC * (P_{max} - P_{min}), P_{min} < 0$$

$$EFC = ERC * P_{max}, \qquad P_{min} \ge 0$$

Co-located ES is not given an EFC; it modifies that of the primary generator

Note:

1. P_{min} is excluded because it is assumed that the primary generator does not have negative P_{min} .

Negative P_{min} Wrinkle: ERC may be greater than one, and EFC > QC

What is the impact of including negative P_{min} in EFC but not in QC?

- QC is proportional to P_{max} , while EFC is proportional to $P_{max} P_{min}$, for $P_{min} < 0$
- It is very likely that EFC > QC for ES and for DR with dispatchable load
 - Depends on the ELCC and ERC deratings and the magnitude of P_{min}
 - This makes intuitive sense: a greater operational range is able to contribute to meeting ramping needs than to meeting peak needs
- Currently, EFC > QC is not permitted; this would need to be addressed in a decision

What if negative generation is more useful than positive generation?

- Perfect generation is positive only, while ES and DR can be < 0
- If negative generation is inherently more "useful" than positive generation in meeting ramping needs, then ERC could be > 1
- This is very unlikely to occur; if it does, we will explore further

Agenda

- Scope
- > Probabilistic Modeling
- ➤ Qualifying Capacity
- > Effective Flexible Capacity
- ➤ Eligibility Criteria and Aggregation
- > Testing and Certification
- ➤ Deterministic Alternatives
- ➤ Next Steps

ES and DR should meet existing and planned RA & CAISO eligibility criteria

System RA

- At least 4-hour duration for P_{max} and P_{min} (in aggregate)
- Ability to operate over three consecutive days
- Must-offer obligation (MOO): may either bid into CAISO or self-schedule

Local RA

- At least 4-hour duration for P_{max} and P_{min} (in aggregate)
- Ability to operate over three consecutive days
- Must-offer obligation (MOO): may either bid into CAISO or self-schedule

Flexible RA

- Ability to ramp or sustain output for at least three hours (in aggregate)
- Must-offer obligation (MOO): must bid into CAISO markets during one of two intervals
 - 6:00-11:00 am
 - 4:00-9:00 pm

ES and DR programs may be aggregated to meet RA requirements

Rules should be flexible yet still aligned with RA and CAISO goals & constraints

- Resources located in the same service territory may be aggregated for System and Flexible RA
- Local RA resources can only be aggregated if at the same transmission node and dispatchable by Local Capacity Area
- Aggregated resources will receive a single Resource ID
 - The resources can nevertheless be modeled separately in the reliability calculator
 - If one element is charging or rebounding while another is discharging or curtailing, the impacts cancel one another out
- Aggregation must take into account use limitations such as hours of non-availability

Agenda

- Scope
- > Probabilistic Modeling
- Qualifying Capacity
- > Effective Flexible Capacity
- ➤ Eligibility Criteria and Aggregation
- > Testing and Certification
- ➤ Deterministic Alternatives
- > Next Steps

Energy Storage must be tested to fully demonstrate RA eligibility

- ES operators must submit test data to the CAISO showing output at P_{max} and P_{min} over the full four-hour duration required for RA eligibility
 - Co-located storage need not meet the four-hour duration requirement
 - Individual units may be aggregated to meet the eligibility criteria
- It is assumed that ES is capable of operating over three consecutive days by recharging at times that do not increase LOLE
- Other physical/operating characteristics must also be submitted (similar to master file data for conventional resources), such as efficiency and available energy

We look forward to parties' input on:

- Other characteristics (manufacturer, test, or historical data) that should be submitted
- Whether and how it would be appropriate to apply a performance uncertainty when modeling less-proven technologies and/or newer units
- What type of ramping capability testing is appropriate, particularly considering the transition from charge to discharge

ES Wrinkle: ELCC, ERC may be above 1; results in QC > P_{max} , EFC > $(P_{max} - P_{min})$

P_{max} may be significantly lower than the short-term maximum power output; likewise, P_{min} may be significantly below maximum possible charging

- Occurs if short-term max/min cannot be sustained over the four hours needed for RA eligibility
- Other resources have short-term "emergency" ratings above P_{max}, but with ES this mode is more likely to be economically dispatched

The model may frequently dispatch the unit for intervals under four hours

• If so, dispatch may be significantly above P_{max} or below P_{min}

More than P_{max} MW of perfect generation may be needed to achieve the same LOLE as with the ES, if ES dispatch is usually above P_{max}

- This also depends on how useful the resource is, in light of other operating characteristics
- This would result in ELCC > 1, because ELCC = Perfect MW / Resource P_{max}
- \bullet Similar logic applies to LORE and ERC, except that the range is $\rm P_{max}$ $\rm P_{min}$

If ELCC > 1, then QC > P_{max} ; if ERC > 1, then EFC > $(P_{max} - P_{min})$

DR P_{max} and P_{min} will be based on testing and Load Impact Protocols

Test Duration	Two hours
Test Participants	A representative sample, or all participants
Initial Processing and Adjustment	Simplified Load Impact Protocols (LIPs) will continue to be used to determine P_{max} , the maximum resource potential (1 in 10); they will also be used to determine P_{min} . Adjustments will consider temperature, time of year, and other relevant factors.
Submission and Certification	Test data and LIPs will be submitted to the CAISO and the CPUC; adjustments will be conducted by the CPUC in approving the resource's P_{max} and P_{min}
Ongoing Adjustment (due to participant turnover and commitment modifications)	If the contracted MW changes from one year to the next, the DRP must inform the CAISO; P_{max} and P_{min} will be revised by the CPUC, utilizing the LIPs
Ongoing Testing	If a resource is not called for an entire year, it must be retested

Other parameters based on program design and DR historical performance

- Modeling will incorporate program design parameters such as hours of availability and dispatch triggers
- Performance of similar programs will be taken into account in estimating likely resource performance, in the absence of program-specific historical data
- As historical data accumulates, it will be incorporated into the modeling (going back 3 years)
 - Historical data will also be processed using simplified LIPs
 - To ensure a reasonable sample size, this data will only be included after ten dispatches

We look forward to parties' input on:

- What guidelines are appropriate in applying similar program performance to the modeling of new programs
- Whether and how it would be appropriate to apply a performance uncertainty when modeling less-proven program types, newer resources, and/or participant turnover
- How DR can/should be held accountable for performance given that Standard (Flexible) Capacity Product rules (SCP and SFCP) do not currently apply to DR
- Test duration (different rules for different applications?)
- The continuing use of simplified load impact protocols

Agenda

- Scope
- > Probabilistic Modeling
- ➤ Qualifying Capacity
- > Effective Flexible Capacity
- ➤ Eligibility Criteria and Aggregation
- > Testing and Certification
- > Deterministic Alternatives
- ➤ Next Steps

Deterministic QC and EFC could utilize a similar framework to that proposed

Many of the proposed regulations could be implemented without probabilistic modeling:

- RA eligibility and CAISO market participation
- Testing and certification
- Aggregation
- QC based on P_{max}
- EFC incorporating operation at negative P_{min} (dispatchable load/charging)
 - Would require removing the current limit of EFC < NQC

Storage QC could be calculated in the same manner as for fossil plants

Starting Point:

P_{max}

Modified by the CAISO

SCP Accountability

- Maximum fourhour output
- Adjusted downward to reflect expected performance
- CAISO Standard Capacity Product (SCP) penalties for nonperformance

Storage EFC calculations could be similar to those for fossil plants

Proposed ES EFC rules

- •EFC = Minimum of (NQC P_{min}) and (180 minutes * Average Ramp Rate)
- Negative P_{min} assumed
- •EFC > NQC permitted
- •CAISO Standard Flexible Capacity Product non-performance penalties

Conventional formula, for start-up time SUT > 90 min

- Assume facility begins at P_{min}
- EFC = Minimum of (NQC-P_{min}) and (180 minutes * Average Ramp Rate)

Conventional formula, for start-up time SUT < 90 min

- Assume facility begins off
- EFC = Minimum of (NQC) and (P_{min} + (180 minutes SUT) * Average Ramp Rate)

Co-located ES: independent or modifying the performance of the primary unit

Independently RA-Eligible ES

- Co-located ES would be separately qualified for RA as stand-alone storage
- The co-located ES would receive its own Resource ID, QC, and EFC

Not Independently Eligible ES

- ES would not receive its own Resource ID, QC, or EFC
- ES would modify performance of the primary facility
- The QC and EFC of the primary facility would change as historical data (including the ES unit) accumulated

Existing Retail DR QC methodologies could be applied to Supply-Side DR

- The QC for current Retail DR programs is calculated using the Load Impact Protocols (LIPs)
- These LIPs could continue to be used (including CPUC adjustments)
- Non-performance would be reflected in future years' QC allocations

Existing conventional EFC methodologies could be adapted to DR

- P_{min} < 0 and EFC > NQC permitted
- Start-up time > 90 min or $P_{min} \le 0$:
 - EFC = Minimum of (NQC-P_{min}) and (180 minutes * Average Ramp Rate)
- Start-up time SUT < 90 min, and P_{min} > 0:
 - EFC = Minimum of (NQC) and $(P_{min} + (180 \text{ minutes} \text{SUT}) * \text{Average Ramp Rate})$
- CAISO Standard Flexible Capacity Product nonperformance penalties (under development)

Agenda

- Scope
- > Probabilistic Modeling
- Qualifying Capacity
- > Effective Flexible Capacity
- ➤ Eligibility Criteria and Aggregation
- > Testing and Certification
- ➤ Deterministic Alternatives
- ➤ Next Steps

Next Steps: Comments and Iteration

- Informal comments are due October 22, 2013
 - joanna.gubman@cpuc.ca.gov
- A formal proposal will be published in December, with workshop to follow in January
- The broader ELCC initiative will be proceeding in parallel, including:
 - Workshop on modeling assumptions in November
 - Study with preliminary results in December
 - Workshop and formal comments in January

Thank you! For Additional Information:

www.cpuc.ca.gov

(Search: Resource Adequacy History)

